f'(x)=3x^2-3
f'(x)=0
3x^2-3=0
x^2= 1
x 1= 1 x2=- 1
f(-3)=- 18
f(- 1)=2
f(-3/2)=9/8
f( 1)=-2
f(x)max=2
f(x)min=- 18
2)f'(x)=3x^2-3
Let the tangent point be (x, x 3-3x)
(x^3-3x-6)/(x-2)=3x^2-3
x 1=x2=0 x3=3
Tangent point (0,0) or (3, 18)
k 1=-3 k2=24
l 1:3x+y- 12=0
l2:24x-y-48=0