a = BD+DC = 10;
s△ABC = 1/2bc * sinA =(√2/4)* BC; - ( 1)
s△ABC = 1/2a * h = 1/2 * 10 * h = 5h; - (2)
From (2)( 1):
(√2/4)*bc=5h
BC/h = 10√2-(3);
(3) The squares on both sides of the equation are:
b^2c^2/h^2=200; - (4)
c^2=h^2+bd^2=h^2+36; ; - (5)
b^2=h^2+cd^2=h^2+ 16; - (6)
(5) Substituting (6) into (4) gives:
(h^2+36)*(h^2+ 16)/h^2=200;
Solve the equation about H 2: H 2 =144; h^2=4;
h = 12; H=2 (give up);
When h = 2: tan ∠ bad = BD/h = 3/2 >1;
∠BAD & gt; 45, and give up the contradiction!
Substitute h= 12 into-(5);
Get:
c^2=h^2+36= 144+36= 180;
AB=c=6√5