Current location - Training Enrollment Network - Mathematics courses - Gaochun Ermo Mathematics
Gaochun Ermo Mathematics
(1) link OE,

AB = AC,

∴∠B=∠ACB.

OC = OE,

∴∠OEC=∠ACB.

∴∠B=∠OEC,

∴OE∥AB.

∵AB⊥GF,

∴OE⊥GF.

∵ point e is on ⊙O,

∴ The straight line FG is tangent to⊙ O. 。

(2) Let the radius of ⊙O be r, then OE=r and AB = AC = 2r.

∫BF = 1,CG=2,

∴AF=2r- 1,OG=r+2,AG=2r+2.

∫OE∨AB,

∴△GOE∽△GAF,

∴OEAF=OGAG,

∴r2r? 1=r+22r+2,

The solution is r=2,

That is, the radius of ⊙O is 2.