Solution 1: separation constant method;
f(x)=(2x)/(3x- 12)=(2x)/[3(x-4)]=(2/3)[x/(x-4)]=(2/3)[(x-4+4)/(x-4)]
=(2/3)[ 1+4/(x-4)]=(2/3)+8/(3x- 12)
When x→4 and f(x) →∞, so f(x) has a vertical asymptote x = 4;; When x →∞, f(x)→2/3, so f(x) has a horizontal gradient.
Nearline y = 3/2; So its range is (-∞, 2/3)∩(2/3,+∞).
Scheme 2: Inverse Function Method:
y=(2x)/(3x- 12),(3x- 12)y=2x,(3y-2)x= 12y,x= 12y/(3y-2),
Exchange the inverse function y= 12x/(3x-2) of x and y, and its domain x≠2/3 is the range of positive function: y≠2/3.
2。 Find the range of y = (1/4) x-2 (1-x)-3.
Solution: y = (1/2) (2x)-2 (1/2) x-3, let (1/2) x = u, then y=u? -2u-3=(u- 1)? -4≦-4, that is,-4 ≦ y.
When u= 1, that is, x=0, y gets the minimum value of -4.
3。 f[x-( 1/x)]=x? -( 1/x? ) +9, find f(x)
Solution: let x-( 1/x)=u, and square both sides to get x? -2+( 1/x? )=u? , so x? +( 1/x? )=u? +2;
So (x+ 1/x)? =x? +2+( 1/x? )=u? +4,x+( 1/x)= √(u? +4);
So f [x-( 1/x)]=x? -( 1/x? )+9 =(x+ 1/x)(x- 1/x)+9 = u √( u? +4)+9
That is, f (u) = u √ (u? +4)+9;
Replace u with x to get f(x)=x√(x? +4)+9; Or f(x)=-x√(x? +4)+9.