Trigonometric inequality | A+B |≤| A |+B||||| A-B|≤| A |+B || A |≤ B < = > -b≤a≤b
|a-b|≥|a|-|b| -|a|≤a≤|a|
The solution of the unary quadratic equation -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
The relationship between root and coefficient x1+x2 =-b/ax1* x2 = c/a Note: Vieta theorem.
discriminant
B2-4ac=0 Note: This equation has two equal real roots.
B2-4ac >0 Note: The equation has two unequal real roots.
B2-4ac & lt; Note: The equation has no real root, but a complex number of the yoke.
formulas of trigonometric functions
Two-angle sum formula
sin(A+B)= Sina cosb+cosa sinb sin(A-B)= Sina cosb-sinb cosa
cos(A+B)= cosa cosb-Sina sinb cos(A-B)= cosa cosb+Sina sinb
tan(A+B)=(tanA+tanB)/( 1-tanA tanB)tan(A-B)=(tanA-tanB)/( 1+tanA tanB)
ctg(A+B)=(ctgActgB- 1)/(ctg B+ctgA)ctg(A-B)=(ctgActgB+ 1)/(ctg B-ctgA)
Double angle formula
tan2A = 2 tana/( 1-tan2A)ctg2A =(ctg2A- 1)/2c TGA
cos2a = cos2a-sin2a = 2 cos2a- 1 = 1-2 sin2a
half-angle formula
sin(A/2)=√(( 1-cosA)/2)sin(A/2)=-√(( 1-cosA)/2)
cos(A/2)=√(( 1+cosA)/2)cos(A/2)=-√(( 1+cosA)/2)
tan(A/2)=√(( 1-cosA)/(( 1+cosA))tan(A/2)=-√(( 1-cosA)/(( 1+cosA))
ctg(A/2)=√(( 1+cosA)/(( 1-cosA))ctg(A/2)=-√(( 1+cosA)/(( 1-cosA))
Sum difference product
2 Sina cosb = sin(A+B)+sin(A-B)2 cosa sinb = sin(A+B)-sin(A-B)
2 cosa cosb = cos(A+B)-sin(A-B)-2 sinasinb = cos(A+B)-cos(A-B)
sinA+sinB = 2 sin((A+B)/2)cos((A-B)/2 cosA+cosB = 2 cos((A+B)/2)sin((A-B)/2)
tanA+tanB = sin(A+B)/cosa cosb tanA-tanB = sin(A-B)/cosa cosb
ctgA+ctgBsin(A+B)/Sina sinb-ctgA+ctgBsin(A+B)/Sina sinb